Combining Optics and SDN In next Generation data centre Networks

Lars Dittmann
Technical University of Denmark

Brussels 23/10/14
A unique combination of skills and know-how for a coordinated hardware and software design.
Why COSIGN?

- **Current technologies are not able to support the scaling of DC networks.**
 - today’s DCN hardware solutions lead to architectures that impose unsustainable overheads in terms of capacity, connectivity and energy consumption requirements.
 - radically new hardware technologies need to be developed, coupled with new frameworks for DCN control and service orchestration in order to enable future-proof DCN architectures.
Datacenter traffic

Source: Cisco
Traffic types and demands

Data Intensive Workloads
- Anti-money Laundering (AML)
- Credit scoring
- CRM
- Fraud Detection
- Counterparty Risk, CVA
- Incremental Modeling
- Mining of Unstructured Data
- Regulatory Reporting
- Sentiment Analysis

Compute Intensive Workloads
- Algorithmic trading / HFT / "Black-box" / "Robo-trading"
- Program Trading
- Arbitrage
- Trend Following
- CEP
- Protocol Conversion
- Exchanges/ECNs Data Feeds
- Real-time FFGA-based applications near market feeds
- Near Real-time
 - Analytic tasks are often time-critical supporting trading desks – “real-time” risk applications
- Batch
 - Long-running
- Big Data
 - Diverse sources of structured/unstructured data - RDBMS, DFS (HDFS, GPFS), In-memory caches etc.
The COSIGN goal

• “The main goal of COSIGN is to define and implement a flat, scalable DCN architecture, empowered by novel optical technologies and SDN based network control and service orchestration for future-proof dynamic, on-demand, low-latency, and ultra-high bandwidth intra-data centre applications.”
Classical DCN’s

Typical topologies: FAT tree, Folded CLOS, Butterfly networks
Classical DCN’s

- Typical concept: aggregation based hierarchy.
- Role of ToR switch: interconnect servers in same rack – aggregate outgoing rack traffic into a few uplink connections (typically 2 for redundancy)
COSIGN step 1
Change the role of the ToR

Significant more uplink connects > 100
Direct connection to other ToR (full mesh)
Enabled by mixture of technology (singlecore and multicore fibers, wavelength etc.)
COSIGN step 2

• Introduce optical switching in the DCN to scale above # of uplink connection in ToR switch.
• Combining large portcount (several hundred optical ports) switches for (fast) circuit switching (sec-min scale switching) with small (tens of optical ports) switches for packet/timeslot switching in the nsec scale.
• Multiple topologies under investigation for handling different traffic patterns and rack -types
Star or Mesh? SDM or WDM?

Star SDM-WDM (WSS based ToR)
- Smaller number of fibers needed for inter-rack connections
- 4x25G WDM = 100G/server
- 25G granularity in ToR
- 100G granularity in central switch, can go down to 25G, but with reduced flexibility
- WSS is grooming 2N→N channels
 - Single-Point-of-Failure (SPOF)
 - Large number of ports for central switch

Star pure SDM (Multi-core switching)
- Smaller number of ports for central switch
- 25G granularity in central switch
- 4x25G grey interface = 100G/server
 - Single-Point-of-Failure (SPOF)
- 100G granularity in ToR

Star pure WDM (AWG based ToR)
- Overlaid central switches for scalability
- 1x100G DP-QPSK = 100G/server capacity
- Smaller number of ports for central switch
- One hop rack-rack connections
 - Single-Point-of-Failure (SPOF)
- 100G granularity in ToR
- 100G granularity in central switch

Mesh pure WDM (WSS based ToR)
- All-to-all direct connections
- Two hop rack-rack connection
- Multi-hop if more capacity needed
- 1x100G DP-QPSK = 100G/server
 - Number of fibers for inter-rack communication aggressively scales with number of racks
- 100G granularity

Mesh pure SDM (space switch ToR)
- All-to-all direct connections
- Two hop rack-rack connection
- Multi-hop if more capacity needed
- 10x10G or 4x25G grey = 100G/server
- 10G/25G granularity in ToR
- Number of fibers for inter-rack communication aggressively scales with number of racks
COSIGN step 3

• Integrate the DCN resources into a common resource control framework
• SDN based framework selected for integration with computational and storage/memory resources
• Multiple platforms and interface “standards” under investigation.
COSIGN top level architecture
The COSIGN approach

Manual, Painful, Error-prone
- Workload deployment requires time and intervention of different admin roles
- Connectivity of workload components is static
- Performance is achieved with over provisioning, questionable scaling characteristics

Discrete, Heterogeneous, Complex
- Multiple management roles and domains
- Unable to make global decisions efficiently and dynamically
- Requires expertise in different vendor technologies

Traditional fat-tree designs
- Over provisioned
- Inefficient for east-west communications
- Restricts (virtual) server placement decisions

Cabling mess
- Many different incompatible interconnects

Automated, Streamlined, Optimized
- Rapid and flexible workload management
- On demand resource allocation and release
- Scalable and efficient virtualized workload components connectivity

Consolidated, Converged, Programmable
- Unified IT and SDN orchestrator
- Converged IT + Network virtualization for data centers
- Efficient and optimized virtual resource utilization and allocation
- Enhanced abstraction mechanisms for emerging optical technologies

High-performance optical solutions
- Flattened DC network architecture
- Fast TOR switch
- 3D stacked transceiver
- InP fast switch
- Low loss beam-steering switch
- Hollow-core and Multi-core fibers

Unified Control Plane
- Rapid and flexible workload management
- On demand resource allocation and release
- Scalable and efficient virtualized workload components connectivity

Orchestrated Management
- App level request
- Infrastructure Reconfigured

Data Plane
- Converged DCN interconnect

Control Plane
- App level request
- Infrastructure Reconfigured

Plan Deploy Operate
- Rapid and flexible workload management
- On demand resource allocation and release
- Scalable and efficient virtualized workload components connectivity

Plan Deploy Operate
- Rapid and flexible workload management
- On demand resource allocation and release
- Scalable and efficient virtualized workload components connectivity
The COSIGN project
S.M.A.R.T objectives

• COSIGN will demonstrate that using a disruptive approach using optical technology, the datacenter network capacity can grow with a steeper growth-rate compared to conventional technology and by the end of the project duration provide at least 25 times more capacity than would have been achieved by an evolutionary approach based on a conventional solution (and by 2020 100 times more capacity).

• COSIGN will demonstrate that this new hardware approach for the datacenter network can be aligned and integrated into a common control plane and integrated into a fully orchestrated datacenter management solution, that will enable provisioning of new cloud based services in minutes compared to month (as it is today)
Info: www.fp7-cosign.eu
Contact: ld@com.dtu.dk