

Providing and orchestrating flexible DataCenterNetworks (DCNs)

Lars Dittmann

Technical University of Denmark, DTU

ld@com.dtu.dk

The challenge for future datacenters

- The Internet is not only an "information super highway", but also an "information super library".
- More and more information is being generated by more and more devices (every second hundreds of new devices are being connected).
- For every byte move between user and a data center 5-7 bytes are moved inside.

The DataCenterNetwork (DCN) – an island within the datacenter

- The DCN is more an enabling resource rather than an integrated resource.
- DCN's are commonly designed and implemented based on initial demands and assumptions for the use of the computational and storage resources.
- DCN's are commonly based on scaling of classic solution and legacy protocols (Fat-tree just becomes even more fat – and TCP becomes DC-TCP).

Why new approaches for DCNs

- Current technologies are not able to support the scaling of DC networks (capacity demand is growing faster than in communications networks in general).
 - today's DCN hardware solutions lead to architectures that impose unsustainable overheads in terms of capacity, connectivity and energy consumption requirements.
 - radically new hardware technologies need to be developed, coupled with new frameworks for DCN control and service orchestration in order to enable future-proof DCN architectures.

The COSIGN approach

Participant no.	Participant organisation name	Part. short name	Country
1 (Coordinator)	Technical University of Denmark	DTU	DK
2	Interoute Communications S.p.A	IRT	IT
3	Nextworks	NEXTWORKS	IT
4	I2CAT	I2CAT	ES
5	Polatis	POLATIS	UK
6	University of Bristol	UNIVBRIS	UK
7	Venture Photonics	VENTURE	UK
8	Universitat Politècnica de Catalunya	UPC	ES
9	University of Southampton	UNISOUTH	UK
10	Technical University of Eindhoven	TUE	NL
11	PhotonX Networks B. V.	PHOTONX	NL
12	IBM Israel - Science and Technology Ltd	IBM	IL
13	OFS	OFS	DK

A unique combination of skills and know-how for a coordinated hardware and software design.

Classical DCN's

- Typical concept: aggregation based hierarchy.
- Role of ToR switch: interconnect servers in same rack aggregate outgoing rack traffic into a few uplink connections (typically 2 for redundancy)

COSIGN short term approach Change the role of the ToR

Significant more uplink connections > 100 Direct connection to other ToRs (full mesh - hybercube)

8 DTU Fotonik, Technical University of Denmark

COSIGN medium term

- Introduce optical switching in the DCN to scale above # of uplink connection in ToR switch.
- Combining large portcount (several hundred optical ports) switches for (fast) circuit switching (sec-min scale switching) with small (tens of optial ports) switches for packet/timeslot switching in the nsec scale.
- Multiple topologi under investigation for handling different traffic patterns and rack -types

COSIGN control and orchestration

10

- Integrate the DCN resources into a common resource control framework
- SDN based framework selected for integration with computational and storage/memory resources
- Multiple platforms and interface "standards" under investigation.

COSIGN top level architecture

11 DTU Fotonik, Technical University of Denmark

Long term scenarios – same control plane and

Conclusion

- New disruptive solutions are needed to handle the growth in datacenter traffic
- New solutions are only fully exploited and used if properly integrated into the datacenter control and service orchestration.
- Even if DCN cost is normally considered less than 10% of the datacenter cost it can enable a much better utilization of other resources.

